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Motivation

* There were 10K hours for determining the categories
present in each image, 20K for using point annotations
for each object present, and over 55K for creating
segmentation masks

- Microsoft coco: Common objects in context

* Annotation and quality control required more than 90
minutes on average for a single image in Cityscapes
dataset

- CityScapes
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S4AL+

Observation 1: Training with teacher-student pseudo labeling at every mini-batch
iteration is very time and GPU resource consuming, especially for semantic segmentation

Observation 2: Exponentially moving average based teacher-student learning remains
sensitive to underlying class distributions observed by the student

Observation 3: Training separately on images from the labeled and unlabeled data, while
the unlabeled data undergoes heavy augmentations, skews batch normalization
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S4AL+

Observation 1: Training with teacher-student pseudo labeling at every mini-batch

iteration is very time and GPU resource consuming, especially for semantic segmentation

Solution: Approach self-training as a potential solution for semi-supervised learning

Observation 2: Exponentially moving average based teacher-student learning remains
sensitive to underlying class distributions observed by the student

Solution: Combat class imbalance by accounting for long-tail classes

Observation 3: Training separately on images from the labeled and unlabeled data, while

the unlabeled data undergoes heavy augmentations, skews batch normalization

Solution: Ensure all images during a mini-batch iteration are seen jointly by the
network




S4AL+

Self-Training

Student

Labeled Data Ground Truth

Xie, Q., Luong, M.T., Hovy, E. and Le, Q.V., 2020. Self-training with noisy student improves imagenet classification.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10687-10698).
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Representation Learning
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S4AL+

Representation Learning
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S4AL+

Representation Learning

* Cross-Entropy Loss
* Regional Contrast
Loss (ReCo)
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Liu, S., Zhi, S., Johns, E. and Davison, A.J., 2021. Bootstrapping semantic segmentation with regional contrast. arXiv 20
preprint arXiv:2104.04465.



Results

* Active Learning
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Aneesh Rangnekar, Christopher Kanan, and Matthew Hoffman. Semantic segmentation with active semi-

supervised learning. IEEE/CVF Winter Conference on Applications of Computer Vision, 2023

Xie, S., Feng, Z., Chen, Y., Sun, S., Ma, C. and Song, M. Deal: Difficulty-aware active learning for semantic 21
segmentation. Asian Conference on Computer Vision, 2020
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Results

* Semi-Supervised Learning:
* CityScapes
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Results

* Does representation learning help?
* CityScapes

CityScapes
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Results

* Future Work
* Knowledge Distillation

Image Ground Truth S4AL
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(SSL_R101D)
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Thank you for watching!
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